Training learnable metrics using modern language models has recently emerged as a promising method for the automatic evaluation of machine translation. However, existing human evaluation datasets in text simplification are limited by a lack of annotations, unitary simplification types, and outdated models, making them unsuitable for this approach. To address these issues, we introduce the SIMPEVAL corpus that contains: SIMPEVAL_ASSET, comprising 12K human ratings on 2.4K simplifications of 24 systems, and SIMPEVAL_2022, a challenging simplification benchmark consisting of over 1K human ratings of 360 simplifications including generations from GPT-3.5. Training on SIMPEVAL_ASSET, we present LENS, a Learnable Evaluation Metric for Text Simplification. Extensive empirical results show that LENS correlates better with human judgment than existing metrics, paving the way for future progress in the evaluation of text simplification. To create the SIMPEVAL datasets, we introduce RANK & RATE, a human evaluation framework that rates simplifications from several models in a list-wise manner by leveraging an interactive interface, which ensures both consistency and accuracy in the evaluation process. Our metric, dataset, and annotation toolkit are available at https://github.com/Yao-Dou/LENS.
translated by 谷歌翻译
This paper addresses the quality issues in existing Twitter-based paraphrase datasets, and discusses the necessity of using two separate definitions of paraphrase for identification and generation tasks. We present a new Multi-Topic Paraphrase in Twitter (MultiPIT) corpus that consists of a total of 130k sentence pairs with crowdsoursing (MultiPIT_crowd) and expert (MultiPIT_expert) annotations using two different paraphrase definitions for paraphrase identification, in addition to a multi-reference test set (MultiPIT_NMR) and a large automatically constructed training set (MultiPIT_Auto) for paraphrase generation. With improved data annotation quality and task-specific paraphrase definition, the best pre-trained language model fine-tuned on our dataset achieves the state-of-the-art performance of 84.2 F1 for automatic paraphrase identification. Furthermore, our empirical results also demonstrate that the paraphrase generation models trained on MultiPIT_Auto generate more diverse and high-quality paraphrases compared to their counterparts fine-tuned on other corpora such as Quora, MSCOCO, and ParaNMT.
translated by 谷歌翻译
当1)培训数据集的类别分布P(Y)时,机器学习模型无法在现实世界应用程序上表现良好。现有方法无法处理存在两个问题的方案,但是对于现实世界应用程序来说,这很常见。在这项研究中,我们向前迈出了一步,研究了域转移下的长尾分类问题。我们设计了三个新颖的核心功能块,包括分布校准的分类损失,视觉语义映射和语义相似性引导性增强。此外,我们采用了一个元学习框架,该框架集成了这三个区块,以改善对看不见的目标域的域概括。为此问题提出了两个新的数据集,称为AWA2-LTS和Imagenet-LTS。我们在两个数据集上评估了我们的方法,并且广泛的实验结果表明,我们提出的方法可以比最新的长尾/域概括方法和组合实现优越的性能。源代码和数据集可以在我们的项目页面https://xiaogu.site/ltds上找到。
translated by 谷歌翻译
深神经网络(DNN)利用多层和大量参数来实现优异的性能。 DNN模型的培训过程通常处理具有许多稀疏功能的大规模输入数据,引起高输入/输出(IO)的成本,而一些层数是计算密集型的。培训过程通常利用分布式计算资源来减少培训时间。此外,异构计算资源,例如CPU,多种类型的GPU,可用于分布式训练过程。因此,多个层对不同计算资源的调度对于训练过程至关重要。为了使用异构计算资源有效地训练DNN模型,我们提出了一种分布式框架,即桨式异构参数服务器(Paddle-Heterps),由分布式架构和加强学习(RL)的调度方法组成。与现有框架相比,Paddle-Heterps的优点是三倍。首先,Paddle-hotior是通过异构计算资源的多样化工作负载的高效培训过程。其次,Paddle-Heterps利用基于RL的方法以有效地将每层的工作量调度到适当的计算资源,以最小化成本,同时满足吞吐量约束。第三,Paddle-hotips管理分布式计算资源之间的数据存储和数据通信。我们进行了广泛的实验,以表明Paddle-hotors在吞吐量方面显着优于最先进的方法(更高14.5倍)和货币成本(312.3%较小)。框架的代码可在:https://github.com/paddlepaddle/paddle公开使用。
translated by 谷歌翻译
分子特性预测在药物发现中起着基本作用,以鉴定具有目标性质的候选分子。然而,分子特性预测基本上是几次射门问题,这使得难以使用普通机器学习模型。在本文中,我们提出了一个属性感知的关系网络(PAR)来处理此问题。与现有的作品相比,我们利用了不同分子特性的相关子结构和关系的事实。我们首先介绍一个属性感知的嵌入功能,将通用分子嵌入的功能转换为与目标属性相关的子结构感知空间。此外,我们设计了一个自适应关系图学习模块,共同估计了分子关系图和优化分子嵌入W.R.T.目标性质,使得有限标签可以有效地在类似的分子之间繁殖。我们采用元学习策略,其中参数在任务中选择性地更新,以便单独模拟通用和属性感知的知识。基准分子特性预测数据集的广泛实验表明,始终如一地优于现有方法,并可以正确获得性能感知分子嵌入和模型分子关系图。
translated by 谷歌翻译
In this paper, we study the problem of knowledge-intensive text-to-SQL, in which domain knowledge is necessary to parse expert questions into SQL queries over domain-specific tables. We formalize this scenario by building a new Chinese benchmark KnowSQL consisting of domain-specific questions covering various domains. We then address this problem by presenting formulaic knowledge, rather than by annotating additional data examples. More concretely, we construct a formulaic knowledge bank as a domain knowledge base and propose a framework (ReGrouP) to leverage this formulaic knowledge during parsing. Experiments using ReGrouP demonstrate a significant 28.2% improvement overall on KnowSQL.
translated by 谷歌翻译
Knowledge graph embedding (KGE), which maps entities and relations in a knowledge graph into continuous vector spaces, has achieved great success in predicting missing links in knowledge graphs. However, knowledge graphs often contain incomplete triples that are difficult to inductively infer by KGEs. To address this challenge, we resort to analogical inference and propose a novel and general self-supervised framework AnKGE to enhance KGE models with analogical inference capability. We propose an analogical object retriever that retrieves appropriate analogical objects from entity-level, relation-level, and triple-level. And in AnKGE, we train an analogy function for each level of analogical inference with the original element embedding from a well-trained KGE model as input, which outputs the analogical object embedding. In order to combine inductive inference capability from the original KGE model and analogical inference capability enhanced by AnKGE, we interpolate the analogy score with the base model score and introduce the adaptive weights in the score function for prediction. Through extensive experiments on FB15k-237 and WN18RR datasets, we show that AnKGE achieves competitive results on link prediction task and well performs analogical inference.
translated by 谷歌翻译
Temporal sentence grounding (TSG) aims to identify the temporal boundary of a specific segment from an untrimmed video by a sentence query. All existing works first utilize a sparse sampling strategy to extract a fixed number of video frames and then conduct multi-modal interactions with query sentence for reasoning. However, we argue that these methods have overlooked two indispensable issues: 1) Boundary-bias: The annotated target segment generally refers to two specific frames as corresponding start and end timestamps. The video downsampling process may lose these two frames and take the adjacent irrelevant frames as new boundaries. 2) Reasoning-bias: Such incorrect new boundary frames also lead to the reasoning bias during frame-query interaction, reducing the generalization ability of model. To alleviate above limitations, in this paper, we propose a novel Siamese Sampling and Reasoning Network (SSRN) for TSG, which introduces a siamese sampling mechanism to generate additional contextual frames to enrich and refine the new boundaries. Specifically, a reasoning strategy is developed to learn the inter-relationship among these frames and generate soft labels on boundaries for more accurate frame-query reasoning. Such mechanism is also able to supplement the absent consecutive visual semantics to the sampled sparse frames for fine-grained activity understanding. Extensive experiments demonstrate the effectiveness of SSRN on three challenging datasets.
translated by 谷歌翻译
Surgical robot automation has attracted increasing research interest over the past decade, expecting its huge potential to benefit surgeons, nurses and patients. Recently, the learning paradigm of embodied AI has demonstrated promising ability to learn good control policies for various complex tasks, where embodied AI simulators play an essential role to facilitate relevant researchers. However, existing open-sourced simulators for surgical robot are still not sufficiently supporting human interactions through physical input devices, which further limits effective investigations on how human demonstrations would affect policy learning. In this paper, we study human-in-the-loop embodied intelligence with a new interactive simulation platform for surgical robot learning. Specifically, we establish our platform based on our previously released SurRoL simulator with several new features co-developed to allow high-quality human interaction via an input device. With these, we further propose to collect human demonstrations and imitate the action patterns to achieve more effective policy learning. We showcase the improvement of our simulation environment with the designed new features and tasks, and validate state-of-the-art reinforcement learning algorithms using the interactive environment. Promising results are obtained, with which we hope to pave the way for future research on surgical embodied intelligence. Our platform is released and will be continuously updated in the website: https://med-air.github.io/SurRoL/
translated by 谷歌翻译
Brain midline shift (MLS) is one of the most critical factors to be considered for clinical diagnosis and treatment decision-making for intracranial hemorrhage. Existing computational methods on MLS quantification not only require intensive labeling in millimeter-level measurement but also suffer from poor performance due to their dependence on specific landmarks or simplified anatomical assumptions. In this paper, we propose a novel semi-supervised framework to accurately measure the scale of MLS from head CT scans. We formulate the MLS measurement task as a deformation estimation problem and solve it using a few MLS slices with sparse labels. Meanwhile, with the help of diffusion models, we are able to use a great number of unlabeled MLS data and 2793 non-MLS cases for representation learning and regularization. The extracted representation reflects how the image is different from a non-MLS image and regularization serves an important role in the sparse-to-dense refinement of the deformation field. Our experiment on a real clinical brain hemorrhage dataset has achieved state-of-the-art performance and can generate interpretable deformation fields.
translated by 谷歌翻译